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Critical Slowing Down in One-Dimensional
Maps and Beyond
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This is a brief review on critical slowing down near the Feigenbaum period-
doubling bifurcation points and its consequences. The slowing down of numer-
ical convergence leads to an “operational” fractal dimension D = 2/3 at a
finite order bifurcation point. There is a cross-over to D0 = 0.538 . . . when the
order goes to infinity, i.e., to the Feigenbaum accumulation point. The prob-
lem of whether there exists a “super-scaling” for the dimension spectrum DW

q

that does not depend on the primitive word W underlying the period-n-tupling
sequence seems to remain open.

KEY WORDS: Period doubling attractor; fractal dimension; critical slowing
down.

1. INTRODUCTION

Feigenbaum’s renormalization group derivation of the two universal expo-
nents δ and α(1,2) is more significant than the discovery of the two
numerical constants themselves. Pedagogically speaking, it provides a nice
paradigm to elucidate the idea and technique of renormalization group
approach in statistical physics without requiring the heavy machinery of
quantum field theory or sound knowledge of phase transitions and crit-
ical phenomena. Almost everything can be shown by using rather ele-
mentary mathematics. This is true not only in “equilibrium” properties
(see, e.g., the review ref. 3), but also in phenomena related to “critical
dynamics”. Since the latter has been studied mainly by Chinese authors
and the results might not be widely known I take the opportunity of
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celebrating the seminal papers of Feigenbaum to provide a brief review of
this development.

2. FRACTALS IN MAPS OF THE INTERVAL

Let us start with the question: Where can one encounter objects with
a genuine fractal dimension in the limiting sets of one-dimensional map-
pings? A one-dimensional map has only one Lyapunov exponent λ. The
Kaplan–Yorke conjecture(4) on the relation between the Lyapunov expo-
nents and Lyapunov dimension implies that when λ>0 the dimension is 1,
when λ<0 the dimension is 0. The only possibility to have non-integer dimen-
sion occurs at parameter values where the Lyapunov exponent itself is zero.

There are three cases of isolated points on the parameter axis where
the Lyapunov exponent is exactly zero:

1. At a period-doubling bifurcation point, e.g., that from a fixed
point to a 2-cycle. The fact that the Lyapunov exponent has a negative
value on both sides of the bifurcation implies a zero dimension on both
sides. Continuity suggests that the dimension should be D =0 right at the
bifurcation point as it actually is.

2. At the Feigenbaum limit of the infinite period-doubling cascade
the trajectory may have a self-similar structure with a fractal dimension.
Indeed, it was calculated by Grassberger(5) in 1981 to be D0 =0.538 . . . .

3. At a tangent bifurcation where the Lyapunov exponent drops
from a positive value in the intermittently chaotic regime to a negative
value in the periodic regime it must go through zero. There might be a
fractal whose dimension should be easily calculable within the mean field
framework of the theory of intermittency. In fact, it is D =1/2.

That is all and the story might end at this point. However, this is just
the beginning of my story on Feigenbaum.

3. SLOWING DOWN EXPONENT NEAR BIFURCATION POINT

In the summer of 1981 I was visiting Brussels and was attracted by
the upsurge of interest in chaotic dynamics during one of the Haken’s syn-
ergetics meeting at Schloss Elmau.(6) I started to do numerical work on
differential equations in order to get some feeling on chaos. This study
resulted in discovering a period-doubling cascade up to the 13th (213 =
8192) bifurcation in the periodically forced Brusselator(7) and in eventually
developing the symbolic dynamics analysis of ODEs many years later.(8)



Critical Slowing Down in One-Dimensional Maps and Beyond 751

The new Cyber computer at the Free University of Brussels was quite
old-fashioned by present-day standard. One had to indicate on a punched
card the CPU time needed for the job. If one put too long a time the
operating system would schedule the job for the weekend and the result
could not come soon. If one put too short a time, the job might terminate
without yielding any result. The convergence of the calculation got slower
and slower when the parameter was approaching a bifurcation point.

With my experience of working on critical dynamics near phase tran-
sitions(9) I immediately understood it as a kind of critical slowing down.
I undertook to estimate the optimal time for job submission and the criti-
cal exponent for slowing down at any finite order bifurcation point turned
out to be �=1, the same universal “mean field” value in phase transition
theory.(10) The derivation was so simple that I reproduce it here.

Let us consider a 1D map of the form xn+1 =µf (xµ) and denote its
pth iterate as

F(p,µ, x)=µf (x)◦µf (x)◦ · · ·µf (x)◦µf (x).

The map xn+1 =F(p,µ, xn) converges to a fixed point x∗ near a pth order
bifurcation at µp. In the vicinity of the fixed point let xn = x∗ + εn. We
have as usual

εn+1 =|F ′(p,µ, x∗)|εn. (1)

The convergence condition |F ′|<1 breaks down at the bifurcation param-
eter µp where

|F ′(p,µp, x∗)|=1. (2)

Assuming that εn diminishes as e−n/τ where τ is a time constant govern-
ing the convergence rate, then from Eq. (1) it follows immediately that

τ =− (log |F ′(p,µ, x∗)|)−1 =−
(

p log µ+
p∑

i=1

log f ′(x∗
i )

)−1

, (3)

where x∗
i are the points forming the p-cycle. Expanding log µ near µp, i.e., let

log µ= log[µp + (µ−µp)]= log µp − µ−µp

µp

+· · ·

and noticing
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p log µp +
p∑

i=1

log f ′(x∗
i )=0,

which follows from Eq. (2), we get

τ = µp

p(µ−µp)
. (4)

Comparing this result with the critical slowing down exponent � defined
in the conventional theory of critical dynamics τ ∝ |µ − µc|� we get the
simple yet universal value �=1.

When I was happy improving the efficiency of job submission, Feigen-
baum came, gave a talk and stayed for a couple of days. In our discussion
Mitchell asked “why didn’t you calculate the slowing down exponent near
the infinite accumulation point of the period-doubling cascade?” Both of
us did not realize that the answer was already there. The behavior of the
Lyapunov exponent near the accumulation point µ∞ has been shown to
be(11,12)

λ(µ∞ −µ)∝ (µ∞ −µ)t

and the exponent t is given by

t = log 2
log δ

=0.44980 . . . ,

where δ = 4.669 . . . is the first Feigenbaum constant. The slowing down
exponent is nothing but the reciprocal of t , therefore �∞ =2.223 . . .

From the discussion with Feigenbaum I realized that no one had cal-
culated the critical slowing down exponent near a bifurcation point in
one-dimensional maps. I wrote a one-page letter to Physics Letters A and
it appeared without argument with the referees.(13) A few years later the
same result �=1 was obtained by others(14) in a lengthy calculation.

We note that the above discussion concerns exponential slowing-down
at µ approaching µp and eventuall µ∞. Right at µ∞ the exponential behav-
ior changes to power-law as studied by Grassberger and Scheunert.(15)

4. OPERATIONAL DIMENSION OF TRANSIENT POINTS

Due to critical slowing down one can never get an isolated point
in tracing the limiting set near the bifurcation parameter, no matter how
close a fixed point is. There always appears an island of points con-
verging to the fixed point. Let us derive the distribution of these points
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and measure the dimension of this ever shrinking island by applying the
box-counting idea analytically.

For simplicity let us consider the first bifurcation parameter µ1 in a
period-doubling cascade of a unimodal map. Taking a parameter value µ

very close to µ1 and shifting the origin of the phase space to the fixed
point, we can write the mapping as

xn+1 =−xn +ax2
n,

where a is determined by the second derivative or curvature of the map
at the fixed point and xn is a small deviation from the fixed point. The
iterations fall at different sides of the fixed point alternatively. In order to
study the distribution on one side of the fixed point we iterate once more
and ignore higher powers of xn to get

xn+2 =xn −2a2x3
n.

When n is big enough this difference equation may be replaced by a differ-
ential equation:

dx

dt
=−a2x3. (5)

If we introduce a distribution of the points ρ(x) and write

dn=ρ(x)dx,

then it follows from Eq. (5) that

ρ(x)∝ 1
|x|3 . (6)

Now let us cover the distribution by using boxes of size ε. Since ρ(x)

drops down monotonically from infinity at x = 0 there always exists a x0
such that

ερ(x0)=1. (7)

When x <x0 there are points in every box, but when x >x0 there is only
one point in many adjacent boxes. Therefore, the total number of points
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is given by

N(ε)= 2x0

ε
+2

∫ ∞

x0

ρ(x)dx,

where the multiplier 2 takes into account contributions from both sides of
the fixed point (it is an unimportant factor). Carrying out the integration
and insert the x0 obtained from Eq. (7), we get

N(ε)∝ ε−2/3.

It follows from this relation that the island has a fractal dimension D =
2/3.(16) We call this an “operational” dimension to distinguish it from the
true dimension D =0.

By the way, the distribution of orbital points in an intermittency
regime may be shown to be

ρ(x)∝ 1
|x|2 , (8)

which leads to a fractal dimension D =1/2.

5. “CROSS-OVER” OF DIMENSION

Now we have got a problem. When approaching any finite order
period-doubling bifurcation point there is an “operational” dimension
whose box-counting value is D = 2/3 = 0.666 . . . At the accumulation
point of the period-doubling cascade the dimension ought to be D0 =
0.538 . . . .(5) How do we reconcile these two distinct numbers? This reminds
us about the crossover of some critical exponent in phase transitions. It
turns out that there are two limits to be taken in a dimension calculation:
the order p of the bifurcation which goes to infinity at the accumulation
point and the box size ε which should vanish. It so happens that there is
a function D(p, ε) and changing the order of taking the limits would lead
to different results:(17)

limp→∞ limε→0 D(p, ε) = 2/3=0.666 . . . ,

limε→0 limp→∞ D(p, ε) = 0.538 . . .
(9)

The two parameters may be combined to form a single scaling parameter
θ = ε1/p and the scaling function reads:

D(θ)=
{

2
3 + γ ln α

ln θ
(D0 − 2

3 ), θ >αγ ,

D0, θ �αγ ,
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where

γ = ln 2
D0 ln α

is a constant made of the universal constants D0 and α.
By the way, the cross-over of the slowing down exponent from �=1

at finite bifurcation to 2.223 at the infinite accumulation might be treated
in a similar way. No one has performed the analysis yet.

It is interesting to note that one can get most of the Grassberger value
D0 =0.538 by using elementary scaling argument and simple arithmetic.

The scaling properties of one-dimensional maps are characterized by
the Feigenbaum convergence rate δ in the parameter space, the scaling fac-
tor α in the phase space, the noise scaling factor κ, and the dimension D

or even the Dq versus q spectrum of the limiting set. In fact, in a uni-
modal map one can pick up infinitely many period-n-tupling sequences
besides the period-doubling ones.(18) All these sequences enjoy scaling
properties similar to the period-doubling sequence. In particular, there are
four series of “exponents” δW , αW , κW , and DW

q , where W is an admissible
primitive symbolic word that determines the particular period-n-tupling
sequence, the Feigenbaum exponents being the simplest case W =R. The
δW and αW were calculated in ref. 18, DW

q – in ref. 19, and κW in ref. 20
for a number of primitive words W .

To be more precise, there are n different phase space scaling factors
ε1, ε2, . . . , εn in a period-n-tupling sequence. In the period-doubling case
the two factors are ε1 =1/α and ε2 = ε2

1 , where α is the Feigenbaum scal-
ing factor α. Putting these ε1 and ε2 into the well-known sum rule (see,
e.g., p. 350 in ref. 25)

n∑

j=1

lDj =1

for n= 2 we get a quadratic equation y + y2 = 1 for y = 1/αD. Therefore,
the dimension D is estimated to be

D ≈ (
√

5+1)/2
log α

=0.524 . . .

It differs from the precise value in less than 2.6%. This result might be
improved by taking into account the “corrections to scaling” as ε2 =α−2

is not an exact relation.
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6. BOX-COUNTING RENORMALIZATION METHOD

The above calculation has made use of the “exact” scaling factor
α = 2.5029. Therefore, it cannot serve as a good start of a scaling the-
ory. Inspired by the Suzuki cluster mean field renormalization theory
Zheng developed a box-counting renormalization method to calculate the
dimension of the limiting set at µ∞ from studying finite periods.(21) The
result(22) is summarized in Table I where nP stands for Period n and nI

for n-Island chaotic band.

Table I. Dimension by Box-Counting Renormalization Method

D0 D1 D2

1P →2P 0.491
4I →8I 0.5641

16I →32I 0.5386 0.514 0.498
“Exact” 0.538045 . . . (23) 0.517 . . . (24) 0.500±0.005(24)

For a period-n-tupling sequence with n�3 there are n scaling factors
ε1, ε2, . . . , εn. No general relation among these numbers have been known
except for εn =ε2

1 , which may be justified by renormalization group consid-
eration (see, e.g., p. 357 in ref. 25). These εi have been obtained numeri-
cally and used to calculate the Dq and f (α) spectra for the limiting sets
of various period-n-tupling sequences.(19)

7. IS THERE A SUPER-SCALING?

The DW
q versus q as well as the fW(α) versus α curves for different

W , e.g., W =R,R, RLL, RLLR, etc., look quite similar to each other and
there is a seemingly monotone dependence of the location of these curves
to the order of these words in the symbolic dynamics of two letters.(19)

Kefe Cao, a graduate student in the southernmost province Yunnan of
China, succeeded in rescaling all these curves into one universal curve
of DW

q /DW
0 versus q/q0 or fW(α(q))/fW (α(0)) versus α(q)/α(0)(26,27) (see

Figs. 1–5 in ref. 29). These rescaled curves coincide within a precision of
four digits that is good enough for naked eyes to accept as a single curve.
As the universal curve no longer depends on the word W it might be
called a “super-scaling” property as compared to the Feigenbaum scal-
ing which depends on the word W . Such an interesting universal property
should be simply provable.
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The Yunnan University group published a few papers to prove the
universal scaling.(28,29) The proof looked too sophisticated and it was
hard to get the essence. Since it is a question of principle whether the
“super-scaling” is an exact or an approximate property I made extensive
numerical calculation trying to rescale the curves with precision higher
than four digits. However, I could never go beyond four digits no matter
what approach I took. Quite probably, the “super-scaling” is an approxi-
mate property which holds with about four digits of numerical precision. I
consider this as an open problem.

It is a great pleasure to devote this paper to the 60th birthday of
Feigenbaum.
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